Non Sibi High School

Andover's Chem 550/580: Advanced Chemistry

Chapter 12, Review Quiz 1 Answers

1

Rank the compounds KI, $\rm MgCl_2,\,MgF_2$ and $\rm SiCl_4$ from lowest to highest melting point.

 $SiCl_4 = molecular = lowest melting point because other three are ionic with the following sum of one cation's charge magnitude + one anion's charge magnitude:$

 $KI = K^+$ and I^- , 1 + 1 = 2 $MgCl_2 = Mg^{2+}$ and Cl^- , 2 + 1 = 3 $MgF_2 = Mg^{2+}$ and F^- , 2 + 1 = 3

lower sum = lower melting point, so KI has second lowest melting point

smaller ionic radii = higher melting point, so MgF_2 has highest melting point because F^- has smaller ionic radius than Cl^- :

 $\rm{SiCl}_4 < \rm{KI} < \rm{MgCl}_2 < \rm{MgF}_2$

$\mathbf{2}$

State whether each of the following is a good or poor conductor of electricity in the solid state:

- a. Na_2SO_4
- b. Xe
- c. SiC
- d. Zn

a. Na⁺ and SO₄ $^{2-}$ = ionic = poor conductor in solid state because cations and anions are immobile (but good conductor in liquid or aqueous state because cations and anions are mobile)

b. nonmetal = molecular = poor conductor in solid state because electrons are localized (and also poor conductor in liquid state because electrons are localized)

c. network covalent with localized electrons = poor conductor in solid state d. metallic = good conductor in solid state because electrons are delocalized

(and also good conductor in liquid state because electrons are delocalized)

3

Rank the following from lowest to highest boiling point:

 CH_3NH_2 , CO, H_2 , N_2 , SiO_2

 $\mathrm{SiO}_2 = \mathrm{network}\ \mathrm{covalent} = \mathrm{highest}\ \mathrm{boiling}\ \mathrm{point}\ \mathrm{because}\ \mathrm{all}\ \mathrm{others}\ \mathrm{are}\ \mathrm{molecular}$

 CH_3NH_2 is capable of hydrogen bonding = second highest boiling point

CO = 14 total electrons, $H_2 = 2$ total electrons, $N_2 = 14$ total electrons

 H_2 has fewest total electrons = weakest London forces = lowest boiling point

CO and N_2 have same total electrons = roughly equal London forces, but CO is polar with dipole-dipole forces whereas N_2 is nonpolar with no dipoledipole forces = CO has third highest boiling point, so:

 $\mathrm{H}_2 < \mathrm{N}_2 < \mathrm{CO} < \mathrm{CH}_3\mathrm{NH}_2 < \mathrm{SiO}_2$

$\mathbf{4}$

Predict whether each solute below will dissolve to a greater extent in carbon tetrachloride or water:

a. H_2O_2 b. Br_2 c. HCNd. NH_4NO_3

CCl₄ is nonpolar, whereas water is polar and is capable of hydrogen bonding.

a. H_2O_2 is capable of hydrogen bonding, so will dissolve to a greater extent in water, which can hydrogen bond as well.

b. The nonpolar Br_2 will dissolve to a greater extent in the nonpolar carbon tetrachloride.

c. The polar HCN will dissolve to a greater extent in the polar water.

d. $NH_4NO_3 = NH_4^+$ and $NO_3^- = ionic$, so will dissolve to a greater extent in the polar water (due to ion-dipole attraction).

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License Contact: kcardozo@andover.edu