Non Sibi High School

Andover's Chem 550/580: Advanced Chemistry

Chapter 18, Review Quiz 1 Answers

1

Calculate the molar solubility of lead(II) bromide (K_{sp} = 4.0×10^{-5}). Include the solubility equilibrium reaction and K_{sp} expression in your answer.

R)	$PbBr_2(s)$	\rightleftharpoons	$Pb^{2+}(aq)$	+	$2Br^{-}(aq)$
I)			0		0
C)			+s		+2s
E)			\mathbf{S}		2s

$$\begin{split} K_{\rm sp} &= [{\rm Pb}^{2+}] [{\rm Br}^{-}]^2 \\ 4.0 \times 10^{-5} &= ({\rm s}) (2{\rm s})^2 \\ {\rm s} &= 0.022 \, {\rm M} \end{split}$$

4			۰.
2		4	,
	,	,	

The molar solubility of scandium(III) fluoride is 1.9×10^{-5} M. Calculate the value of K_{sp} for scandium(III) fluoride. Include the solubility equilibrium reaction and K_{sp} expression in your answer.

R)	$ScF_3(s)$	$\stackrel{\frown}{=}$	$Sc^{3+}(aq)$	+	$3F^{-}(aq)$
I)			0		0
C)			+s		+3s
E)			s		3s

$$K_{sp} = [Sc^{3+}][F^-]^3 = (s)(3s)^3 = 27s^4 = 27(1.9 \times 10^{-5})^4 = 3.5 \times 10^{-18}$$

Predict if precipitation will occur when 14 mL of 6.5×10^{-5} M AgNO₃ is mixed with 56 mL of 3.5×10^{-4} M K₃PO₄. (K_{sp} = 8.9×10^{-17} for Ag₃PO₄)

 K^+ and NO_3^- = spectator ions

 $Ag_3PO_4(s) \rightleftharpoons 3Ag^+(aq) + PO_4^{3-}(aq)$

total volume after mixing = 14 mL + 56 mL = 70 mL

$$\begin{split} [\mathrm{Ag^{+}}]_{i} &= 6.5 \times 10^{-5} \,\mathrm{M} \left(\frac{14 \,\mathrm{mL}}{70 \,\mathrm{mL}}\right) = 1.3 \times 10^{-5} \,\mathrm{M} \\ [\mathrm{PO}_{4}\,^{3-}]_{i} &= 3.5 \times 10^{-4} \,\mathrm{M} \left(\frac{56 \,\mathrm{mL}}{70 \,\mathrm{mL}}\right) = 2.8 \times 10^{-4} \,\mathrm{M} \\ \mathrm{Q_{sp}} &= (1.3 \times 10^{-5})^{3} (2.8 \times 10^{-4}) = 6.2 \times 10^{-19} < \mathrm{K_{sp}} \text{ , no precipitate} \end{split}$$

 $\mathbf{4}$

A metal hydroxide with the formula $M(OH)_2$ was mixed with water and stirred until a saturated solution was created. The pH of the solution was found to be 9.88. Calculate the value of K_{sp} for the metal hydroxide.

 $\begin{array}{rcl} R) & M(OH)_2(s) \ \rightleftharpoons \ M^{2+}(aq) \ + \ 2OH^-(aq) \\ I) & 0 & 0 \\ C) & +s & +2s \\ E) & s & 2s \end{array}$ $pOH = 14.00 - 9.88 = 4.12 \\ [OH^-] = 10^{-4.12} = 7.6 \times 10^{-5} \ M = 2s \\ s = 3.8 \times 10^{-5} \ M \\ K_{sp} = [M^{2+}][OH^-]^2 = (s)(2s)^2 = 4s^3 = 4(3.8 \times 10^{-5})^3 = 2.2 \times 10^{-13} \end{array}$

$\mathbf{5}$

Calculate the molar solubility of lead(II) bromide ($K_{sp} = 4.0 \times 10^{-5}$) in 0.25 M Pb(NO₃)₂. Include the solubility equilibrium reaction and K_{sp} expression in your answer.

 $NO_3^{-} =$ spectator ion, $[Pb^{2+}]_i = 0.25 M:$

3

R)	$PbBr_2(s)$	\rightleftharpoons	$Pb^{2+}(aq)$	+	$2Br^{-}(aq)$
I)			0.25		0
C)			+s		+2s
E)			0.25 + s		2s

$$\begin{split} K_{sp} &= [Pb^{2+}][Br^{-}]^2 \\ 4.0 \times 10^{-5} &= (0.25 + s)(2s)^2 \\ s &= 0.0062\,M \end{split}$$

An aqueous solution of $\rm Pb(NO_3)_2$ is added dropwise to an aqueous mixture containing 0.010 M Br^ and 0.95 M I^ .

a. Calculate the minimum molarity of Pb²⁺ that must be reached to initiate precipitation of Br⁻ (K_{sp} = 4.0×10^{-5} for PbBr₂) and the minimum molarity of Pb²⁺ that must be reached to initiate precipitation of I⁻ (K_{sp} = 8.5×10^{-9} for PbI₂). Which precipitates first, Br⁻ or I⁻?

b. At the point when the second ion from the original mixture begins to precipitate, what percentage of the first ions initial molarity still remains unprecipitated in the solution? Can the Br^- and I^- mixture be effectively separated by fractional precipitation?

a. NO₃ $^-$ = spectator ion

 $\begin{array}{l} PbBr_{2}(s)\rightleftharpoons Pb^{2+}(aq)\,+\,2Br^{-}(aq)\\ K_{sp}=[Pb^{2+}][Br^{-}]^{2}\\ 4.0\times10^{-5}=[Pb^{2+}](0.010)^{2}\\ [Pb^{2+}]=0.40\,M=minimum \ that \ must \ be \ reached \ to \ precipitate \ Br^{-} \end{array}$

$$\begin{split} PbI_2(s) &\rightleftharpoons Pb^{2+}(aq) + 2I^-(aq) \\ K_{sp} &= [Pb^{2+}][I^-]^2 \\ 8.5 \times 10^{-9} &= [Pb^{2+}](0.95)^2 \\ [Pb^{2+}] &= 9.4 \times 10^{-9} \, \mathrm{M} = \mathrm{minimum} \ \mathrm{that} \ \mathrm{must} \ \mathrm{be} \ \mathrm{reached} \ \mathrm{to} \ \mathrm{precipitate} \ I^- \end{split}$$

Since less Pb^{2+} must be added to precipitate I^- , I^- precipitates first.

b. $8.5 \times 10^{-9} = (0.40)[I^-]^2$ $[I^-] = 1.5 \times 10^{-4} \,\mathrm{M}$ still remains unprecipitated in the solution at the point when Br⁻ begins to precipitate $\frac{1.5\times 10^{-4}\,M}{0.95\,M}\times 100\%=0.016\%$ of initial I^ molarity still remains

unprecipitated in the solution at the point when Br⁻ begins to precipitate.

Only a very small percentage of the original amount of I^- remains in solution. Therefore, since nearly 100% of the original amount of I^- is incorporated into a solid precipitate before any of the Br⁻ can leave the solution, the Br⁻ and I⁻ mixture can be effectively separated by fractional precipitation.

This work is licensed under a <u>Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License</u> <u>Contact: kcardozo@andover.edu</u>