# Non Sibi High School

# Andover's Chem 250: Introductory/Basic Chemistry

# Chapter 12, Review Quiz 1 Answers

#### 1

Rank the compounds  $CaBr_2$ , KI, MgS, and  $SiCl_4$  from lowest to highest melting point.

 $SiCl_4$  = molecular = lowest melting point because other three are ionic with the following sum of one cation's charge magnitude + one anion's charge magnitude:

$$CaBr_2 = Ca^{2+}$$
 and  $Br^-$ ,  $2 + 1 = 3$ 

$$KI = K^{+} \text{ and } I^{-}, 1 + 1 = 2$$

$$MgS = Mg^{2+}$$
 and  $S^{2-}$ ,  $2 + 2 = 4$ 

highest sum = highest melting point, so SiCl<sub>4</sub> < KI < CaBr<sub>2</sub> < MgS

## 2

State whether each of the following is a good or poor conductor of electricity in the solid state:

- a.  $Na_2SO_4$
- b. Xe
- c. SiC
- d. Zn
- a.  $\mathrm{Na^{+}}$  and  $\mathrm{SO_{4}}^{2-} = \mathrm{ionic} = \mathrm{poor}$  conductor in solid state because cations and anions are immobile (but good conductor in liquid or aqueous state because cations and anions are mobile)
- b. nonmetal = molecular = poor conductor in solid state because electrons are localized (and also poor conductor in liquid state because electrons are localized)
  - c. network covalent with localized electrons = poor conductor in solid state

d. metallic = good conductor in solid state because electrons are delocalized (and also good conductor in liquid state because electrons are delocalized)

## $\mathbf{3}$

Rank the following from lowest to highest boiling point:

$$CH_3NH_2$$
,  $CO$ ,  $H_2$ ,  $N_2$ ,  $SiO_2$ 

 ${
m SiO_2}={
m network}$  covalent = highest boiling point because all others are molecular

 $\mathrm{CH_3NH_2}$  is capable of hydrogen bonding = second highest boiling point

CO=14 total electrons,  $H_2=2$  total electrons,  $N_2=14$  total electrons

 $H_2$  has fewest total electrons = weakest London forces = lowest boiling point

 ${\rm CO}$  and  ${\rm N}_2$  have same total electrons = roughly equal London forces, but  ${\rm CO}$  is polar with dipole-dipole forces whereas  ${\rm N}_2$  is nonpolar with no dipole-dipole forces =  ${\rm CO}$  has third highest boiling point, so:

$$\mathrm{H_2} < \mathrm{N_2} < \mathrm{CO} < \mathrm{CH_3NH_2} < \mathrm{SiO_2}$$

#### 4

Predict whether each solute below will dissolve to a greater extent in carbon tetrachloride or water:

- a.  $H_2O_2$
- b.  $Br_2$
- c. HCN
- d.  $NH_4NO_3$

CCl<sub>4</sub> is nonpolar, whereas water is polar and is capable of hydrogen bonding.

- a.  $H_2O_2$  is capable of hydrogen bonding, so will dissolve to a greater extent in water, which can hydrogen bond as well.
- b. The nonpolar  $\mathrm{Br}_2$  will dissolve to a greater extent in the nonpolar carbon tetrachloride.
  - c. The polar HCN will dissolve to a greater extent in the polar water.

d.  $NH_4NO_3 = NH_4^+$  and  $NO_3^- = ionic$ , so will dissolve to a greater extent in the polar water (due to ion-dipole attraction).



 $\frac{\text{Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License}}{\text{Contact: kcardozo@andover.edu}}$